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ETH Zürich, Institute of Fluid Dynamics, ETH Zentrum, CH-8092 Zürich, Switzerland
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The turbulent boundary layer along a compression ramp with a deflection angle of 18◦
at a free-stream Mach number of M = 3 and a Reynolds number of Reθ = 1685 with
respect to free-stream quantities and mean momentum thickness at inflow is studied
by direct numerical simulation. The conservation equations for mass, momentum,
and energy are solved in generalized coordinates using a 5th-order hybrid compact-
finite-difference-ENO scheme for the spatial discretization of the convective fluxes
and 6th-order central compact finite differences for the diffusive fluxes. For time
advancement a 3rd-order Runge–Kutta scheme is used. The computational domain is
discretized with about 15× 106 grid points. Turbulent inflow data are provided by a
separate zero-pressure-gradient boundary-layer simulation. For statistical analysis, the
flow is sampled 600 times over about 385 characteristic timescales δ0/U∞, defined by
the mean boundary-layer thickness at inflow and the free-stream velocity. Diagnostics
show that the numerical representation of the flow field is sufficiently well resolved.

Near the corner, a small area of separated flow develops. The shock motion is
limited to less than about 10% of the mean boundary-layer thickness. The shock
oscillates slightly around its mean location with a frequency of similar magnitude
to the bursting frequency of the incoming boundary layer. Turbulent fluctuations
are significantly amplified owing to the shock–boundary-layer interaction. Reynolds-
stress maxima are amplified by a factor of about 4. Turbulent normal and shear
stresses are amplified differently, resulting in a change of the structure parameter.
Compressibility affects the turbulence structure in the interaction area around the
corner and during the relaxation after reattachment downstream of the corner.
Correlations involving pressure fluctuations are significantly enhanced in these regions.
The strong Reynolds analogy which suggests a perfect correlation between velocity
and temperature fluctuations is found to be invalid in the interaction area.

1. Introduction
In many cases of practically relevant supersonic flows, shocks and boundary layers

are prevalent entities, and at sufficiently high Reynolds number the boundary layers
can be transitional or turbulent. A few examples are transonic airfoils, supersonic
air intakes, propelling nozzles at non-adapted configuration, and deflected control
surfaces of vehicles at transonic or supersonic speed.

Research on shock–boundary-layer interaction has been pioneered by Ackeret,
Feldmann & Rott (1946) and Liepmann (1946), who did the first systematic experi-
mental studies on laminar and turbulent boundary layers interacting with normal or
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impinging oblique shocks. Since then, research has been based mainly on experimen-
tal data, and considerable progress has been achieved in understanding the complex
interaction phenomena for laminar and to some extent for turbulent flows.

Adamson & Messiter (1980) give a comprehensive summary of theoretical achieve-
ments. The most significant theory is the free interaction theory where viscosity
effects are confined to a small near-wall layer. The outer flow is considered to be
inviscid and to communicate with the near-wall fluid by a coupling layer, resulting
in a triple-deck structure for the interaction system. The main success of the free
interaction theory is the derivation of a pressure equation which has been confirmed
experimentally for sufficiently high Reynolds numbers (Adamson & Messiter 1980).
A theoretical treatment of turbulent flows requires the introduction of another layer
into the free-interaction model where Reynolds stresses are dominant. On the basis
of this theory Adamson & Messiter (1980) pointed out that the particular choice of a
turbulence model does not affect the surface pressure much if there is no separation,
which renders surface pressure a rather insensitive measure for quality assessment of
turbulence models. More critical is the correct prediction of the skin friction.

Experimental work has continued along the lines given by Ackeret et al. (1946) and
Liepmann (1946). Canonical configurations were studied at supersonic or transonic
flow speeds and at conditions which render the boundary layer laminar or turbulent.
Here, we give a brief, and by no means complete, review of more recent experimental
work on turbulent supersonic compression ramp flows. Prompted by the requirement
of accurate solutions of the Reynolds-averaged Navier–Stokes equations (RANS) by
computational fluid dynamics (CFD) for design of supersonic aircraft, experimen-
tal databases were established. Settles, Fitzpatrick & Bogdonoff (1979) found that
RANS computations with different turbulence models gave poor agreement with
experimental skin friction data in cases with large flow separation. Complementary
studies by Ardonceau et al. (1979) at Mach number M∞ = 2.25 employed laser-
Doppler anemometry in comparison with traditional hot-wire sensors. Both studies
established that the longitudinal velocity profiles downstream of the interaction area
exhibit a two-inflection-point structure. Deflection angles up to 18◦ were studied and
in no case was evidence for a cellular (three-dimensional) large-scale organization in
the reattachment region found which could indicate the existence of Görtler vortices
in the detached shear layer containing the separation bubble.

Dolling & Murphy (1983) detected a large-scale random shock motion in their
ramp data at a free-stream Mach number of M∞ = 3 and a Reynolds number
of Reδ0

' 106. The observed shock motion spread over a region of 75% to 90%
of the mean boundary-layer thickness δ0. Maximum shock-motion frequencies were
found between fsh = 0.035fc and fsh = 0.06fc where fc = U∞/δ0 is the characteristic
frequency (inverse timescale) of the oncoming boundary layer. These results have been
corroborated by Dolling & Or (1985) who found optical evidence for a large-scale
shock unsteadiness by high-speed Schlieren photographs. At essentially the same flow
parameters as those of Dolling & Murphy (1983), incipient separation was found for
a ramp deflection angle of β = 16◦.

Detailed measurements of the fluctuating flow field have been performed by Settles
et al. (1979) and Smits & Muck (1987) for ramp configurations at similar parameters
as Dolling & Or (1985). They confirmed that flow fields were mainly two-dimensional
for β up to 16◦, where incipient separation was observed. Three-dimensional flow
cells in the reattachment area were found for β = 20◦. The fluctuation measurements
showed large fluctuation-amplification factors of 5 to 10, along with a change in
turbulence structure expressed by the structure parameter a (see § 3.5). The large-scale
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shock motion which was also observed by Smits & Muck (1987) prompted them to
suggest that a ‘pumping’ mechanism was responsible for turbulence fluctuation am-
plification by a transfer of shock-motion energy to turbulent kinetic energy. In earlier
investigations, Plotkin (1975) found a relationship between shock motion and oncom-
ing boundary-layer turbulence. This issue was taken up by Andreopoulos & Muck
(1987) who re-investigated the flow at the same parameters as Smits & Muck (1987).
They found that the shock-oscillation spectrum has a significant component at a fre-
quency which corresponds to the incoming boundary-layer bursting frequency. This
lead them to the conclusion that shock-oscillation is indeed driven by the oncoming
large-scale turbulent fluctuations. This conclusion has sparked a controversial debate.
Thomas, Putnam & Chu (1994), for example, objected to the main conclusion of An-
dreopoulos & Muck (1987) and reported to find no correlation between shock-front
oscillation and turbulent bursting events for their transonic normal-shock interaction
data. The debate came to a preliminary conclusion by the finding of Erengil & Dolling
(1991a) and Erengil & Dolling (1991b) that the shock indeed shows both large-scale
and small-scale fluctuations. Both of them are random and seem not to be traceable
clearly to turbulence events in the oncoming flow, although there is a correlation
between shock motion and pressure fluctuations in the oncoming boundary layer.
Also, the separation bubble was found to ‘breathe’, so that the overall flow structure
oscillates with random frequency between a state of small separation and a state
of large separation, each of which results in a different shock position and pressure
distribution. Spina, Smits & Robinson (1994) state that the shock motion is closely
tied to the incoming turbulence field. Also, they give evidence for the validity of the
strong Reynolds analogy (SRA), which provides a correlation between temperature
and velocity fluctuations based on the similarity of the boundary-layer form of the
energy and the momentum equations for a Prandtl number Pr = 1, see, e.g. Smits &
Dussauge (1996). It is, however, unclear how much experimental evidence for SRA is
affected by the data-acquisition technique itself.

Marshall & Dolling (1992) revisit the experimental compression ramp data with
the objective of addressing the question of why even sophisticated second-order
closure turbulence models fail to predict the correct average wall pressure and
skin friction. Concluding from the fact that turbulence models fail dramatically for
significant separation only, but show a reasonable performance for attached flows,
and from the fact that in most experiments a large-scale shock motion is going
along with large-scale separation, Marshall & Dolling (1992) suspected this large-
scale low-frequency unsteadiness to be a prime reason for the disagreement between
RANS and experiments. Flow-field three-dimensionality – where it is unclear how
much this is related to the large-scale unsteadiness – and compressibility effects in
the interaction area may be added to this list. Dolling (1998) emphasizes again
that the low-frequency expansion–contraction of the separated-flow area is critical in
determining the correct time-averaged wall pressure, skin friction, separation location,
and downstream velocity profiles. The origin of these fluctuations is, however, still
unclear. Intuitively, it seems not to be obvious why some in situ instability mechanism
should be responsible for a low-frequency forcing, although Smits & Dussauge (1996)
suggest an upstream coupling between the reattachment and separation regions across
the elliptic separated flow region. It seems more likely, however, that in this case the
shock motion and separation-bubble breathing would not be random, but rather
lock into a characteristic frequency, contrary to the observations. Some variations
in the thermodynamic properties of the oncoming flow (e.g. temperature) may have
an effect too, since recorded data by Fernholz et al. (1989) and Settles & Dodson
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(1991) show some spatial variation in measured reference quantities at the measuring
stations.

Theoretical research on turbulence usually follows the strategy of stepwise in-
creasing geometrical and physical complexity. The simplest case is that of isotropic
turbulence. This configuration has been subjected to theoretical and numerical study
for many years. Linearized theories such as rapid distortion theory (RDT) and linear
interaction analysis (LIA) have been re-applied to this problem recently by Lee, Lele
& Moin (1993) and Mahesh, Lele & Moin (1993). The results show that turbulent
fluctuations are amplified across the shock, where the amplification rate increases with
Mach number (Lee et al. 1993). Transverse vorticity fluctuations are amplified by a
factor of 10 at M = 3, for instance. The shock-front distortion depends on the integral
lengthscale and the turbulence Mach number. The Taylor microscales consistently
decrease across the shock, whereas the dissipation lengthscale increases for Mach
numbers less than 2 but decreases for higher Mach numbers. Isotropic turbulence
loses isotropy owing to the interaction with the shock and becomes axisymmetric. The
degree of compressibility of the incoming turbulence determines the turbulence ampli-
fication across the shock, the larger the compressible part of the velocity fluctuations
the smaller the turbulence amplification (Hannappel & Friedrich 1995).

The effect of normal-shock strength on isotropic turbulence has been assessed by
Mahesh et al. (1995) and Lee, Lele & Moin (1997). They show that direct numerical
simulation (DNS) and linear interaction analysis (LIA) agree well within reasonable
margins concerning the prediction of fluctuation amplification. A consistent decrease
of all turbulence lengthscales was observed across the interaction also for strong
shocks. Different results were found earlier by Keller & Merzkirch (1990), but the
theoretical and DNS results of Lee et al. (1997) are conclusive and the experimental
results seem to suffer from the data-acquisition technique. For higher Mach numbers
(around 2 to 3) the thermodynamic fluctuations become non-isentropic, unlike at
lower Mach numbers. The specifics of entropy fluctuations interacting with a nor-
mal shock have been investigated by Mahesh, Lele & Moin (1997) who conclude
that the temperature–velocity correlation in the oncoming turbulence strongly af-
fects turbulence evolution across the shock. This effect has been explained by the
action of bulk compression and baroclinic torque. It was also found that shock-front
oscillations invalidate Morkovin’s hypothesis (Smits & Dussuage 1996) across the
shock.

Physical complexity is increased if allowance is made for (constant) mean shear
and shock obliqueness. This case has been studied by Mahesh, Moin & Lele (1996)
with the following main findings. The concept of SRA is found not to be valid across
the shock. Reynolds stresses decrease for normal shocks, and pressure fluctuations
are damped for moderate Mach numbers but amplified for Mach numbers larger
than about 3. The amplification of turbulent kinetic energy decreases with increasing
shock obliqueness, whereas the Reynolds shear-stress is less damped with increasing
shock obliqueness and eventually is amplified for large obliqueness angles. It has
also been demonstrated by Mahesh et al. (1996) that traditional turbulence models,
even second-order closures such as the model by Launder, Reece & Rodi (1975), are
unable to predict the correct turbulence structure.

One main objective of experimental, numerical and theoretical studies is the im-
provement of turbulence models for the solution of the RANS equations. For shock–
boundary-layer interaction with significant separation, however, even the explicit
modelling of compressibility effects failed to produce an agreement between experi-
ment and RANS computations (e.g. Brankovic & Zeman 1994). Two-equation models
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seem to suffer from insufficient upstream influence across the separation area (Wilcox
1994), while the prediction of the pressure plateau in the separated area and of the
flow downstream of the separation is fair. Some improvement was achieved by second-
order closures, in particular algebraic Reynolds-stress models (Wilcox 1989). Yet, the
prediction uncertainty of the separation location is about one boundary-layer thick-
ness and the recovery of the reattached boundary layer is overpredicted. Mean-flow
profiles are improved but still differ considerably from experimental measurements in
the interaction area.

It is the objective of this paper to gain understanding of the interaction process
between a turbulent separated boundary layer and a strong deflection shock. Being
the first attempt of a DNS of a flow of such physical complexity, the parameter choice
was conservative and was essentially limited by the available computer resources (see
Moin & Mahesh (1998) for general remarks on DNS). The Reynolds number is chosen
high enough so that the computational domain resides well above the stability limit of
the corresponding laminar boundary layer. The precursor turbulent boundary-layer
simulation which provides the inflow data gives a momentum thickness Reynolds
number of the mean boundary layer at inflow of Reθ = 1685. The free-stream Mach
number has been fixed at M∞ = 3, since this seems to be where most experimental
data are available. First, a deflection angle β = 25◦ has been tried in accordance
with the experimental data generated by A. Zheltovodov et al. at ITAM, RAS
Novosibirsk, Russia, at Reθ = 9600 (partially published by Settles & Dodson 1991).
However, the possibility that the expected size of the flow separation conflicted with
the restricted streamwise domain size, and that the upstream and downstream effects
of the separated flow could interfere with the inflow or outflow boundaries, prompted
us to reduce the deflection angle to 18◦, where a relatively small separation area
was eventually obtained. This is in between the cases of Smits & Muck (1987) at
β = 20◦ with a fairly large separation and at β = 16◦ with incipient separation.
Since, owing to the significant Reynolds-number differences, comparisons of the
computation with the experiments can only be qualitative, we gave preference to the
compromise of choosing β = 18◦ in order to obtain a small but more than incipient
flow separation.

The DNS limitations are obvious. The small Reynolds number results in a small
mean-streamline curvature, and for that reason the shock does not penetrate deeply
into the boundary layer since its origin are confluent compression waves emerging
from the sonic layer. This is a main difference from high-Re experiments, since it
also affects the magnitude of the near-wall pressure gradient, which again has an
effect on the size of the flow separation. For a given pressure gradient, of course,
a smaller Re would result in a larger separation. Also, we do not expect to be
able to capture streamwise structures with a large spanwise spacing, such as Görtler
vortices, owing to the spanwise domain size which we have limited to somewhat more
than one mean-boundary-layer thickness. The narrow spanwise domain also poses
a considerable restriction on the comparability of the results with experiments, but
at this stage it was unavoidable owing to the enormous resources required. In an
experimental set-up, a spanwise domain about 10 times larger would be considered
sufficient, also to exclude sidewall effects which are not an issue in the computations.
Ensemble averaging was limited to 600 samples in time, although about twice as many
would be desirable to obtain smooth correlations involving pressure fluctuations or
derivatives. We refrained, however, from further continuing this simulation which had
already consumed about 6000 CPU hours, and tried to learn as much as possible
from the data as they are.
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Figure 1. Sketch of the compression-ramp configuration.

2. Problem formulation and simulation method
The compression ramp configuration has been chosen in order to increase the

physical complexity compared with the homogeneous shear-flow oblique-shock in-
teraction simulations of Mahesh et al. (1996). A family of canonical configurations
for shock–turbulence interaction has been devised by Green (1970). Among these are
the compression ramp, the oblique shock reflection and the case of a normal shock
interacting with a boundary layer. The compression ramp, see figure 1, is a standard
test case for turbulence modelling, and a wealth of experimental data is available (al-
though at significantly higher Reynolds number than presently affordable by DNS). It
also has some technical advantages over the other cases. Since the shock is generated
at the boundary-layer edge, close to the corner, and emanates outward through the
outflow part of the computational domain, the need to impose an impinging shock
accurately at the far-field boundary is avoided. Also, the required computational
domain size is reduced in comparison with the case of an oblique impinging shock.
These advantages seem to justify the additional computational cost required for a
generalized-coordinate formulation in the case of a compression ramp.

We chose a ramp deflection angle of β = 18◦ as a compromise between being
able to capture desired large-scale flow features, such as mean-flow separation, and
the limited computational resources. For β = 18◦, we expect a small flow separa-
tion only, with the benefit that some effects of separation can be studied, without
requiring excessive computational domain sizes. In the case of a larger deflection
angle, a significant increase of the streamwise (and possibly spanwise) extent of the
computational domain would be necessary to resolve the separation area properly
and to decouple it sufficiently from inflow and outflow boundaries. Nevertheless, the
required computational resources were considerable: the flow field was discretized by
about 15 × 106 grid points; the computation required about 750 hours of 8 vector
CPUs of a NEC SX-4 running in parallel; the main memory requirement was about
3.5 GBytes and about 400 GBytes of data have been stored in mass storage for
postprocessing.

2.1. Mathematical model

For convenience, a tensor notation (with summation convention) is used in the
following, where the subscripts 1, 2 and 3 correspond to the streamwise, spanwise,
and wall-normal coordinate, respectively. We write the fundamental equations in the
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Figure 2. Computational mesh (each 20th line); numbers in circles indicate stations where profiles
are shown in § 3.

Cartesian (x1, x2, x3) physical space, using a transformation to computational space
(ξ1, ξ2, ξ3) which is detailed in Adams (1998). Considering essentially two-dimensional
configurations only, we limit the coordinate generalization to the (x1, x3)-plane, and x2

is mapped onto ξ2 linearly. Figure 2 shows a side-view of the computational domain,
where only each twentieth mesh line is displayed.

In the following, dimensional quantities are marked by an asterisk. As a reference
length, we use the displacement thickness δ∗1 of the mean boundary layer at inflow.
The integration domain has the extents L∗1 = 63.8 δ∗1 in the streamwise and L∗2 = 2.9 δ∗1
in the spanwise direction, and is truncated at L∗3 varying between 10.9 δ∗1 and 21.4 δ∗1
in the wall-normal direction. We assume the solution to be L2-periodic in x2.

A perfect gas with a specific-heat ratio of γ = 1.4 is assumed and the viscosity
is calculated according to Sutherland’s law with a reference temperature T ∗∞. The
non-dimensionalization is carried out by

ui = u∗i /U
∗
∞, ρ = ρ∗/ρ∗∞, T = T ∗/T ∗∞, p = p∗/(ρ∗∞U

∗
∞

2
), E = E∗/(ρ∗∞U

∗
∞

2
).

Here, the ui terms denote the Cartesian velocity components, ρ the density, p the
pressure and E = p/(γ−1)+ρuiui/2 the total energy. The time t is non-dimensionalized
by δ∗1/U∗∞.

Given a Reynolds number Re = U∗∞ρ∗∞δ∗1/µ∗∞ and a Mach number M = U∗∞/a∗∞,
we can write the compressible Navier–Stokes equations in curvilinear coordinates as

∂
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J
+

∂

∂ξ2
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J
+

∂

∂ξ3
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J
, (2.1)

where the conservative variables are U = {ρ, ρu1, ρu2, ρu3, E}, and J is the Jacobian
of the mapping (x1, x2, x3)↔ (ξ1, ξ2, ξ3). FE , GE , HE are the convective fluxes and FS ,
GS , HS are the diffusive fluxes in the respective coordinate directions. For the detailed
flux definitions, refer to Adams (1998).

Boundary conditions are as follows. At the inflow, we prescribe all variables in time,
using data from a separate spatial boundary layer DNS, see § 3.1. At the outflow,
a sponge-layer technique is used, which is detailed in Adams (1998). At the upper
truncation plane, free-stream conditions are imposed. The wall is assumed to be
isothermal, and no-slip conditions are imposed on the velocity. The isothermal-wall
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condition appears to be appropriate for a turbulent flow since the wall-temperature
response to temperature changes in the ambient fluid is rather slow owing to the
comparably large heat capacity of the immersed body. Experimental conditions are
closer to adiabatic for the statistical mean. Evidence, however, that isothermal-wall
boundary conditions are an appropriate approximation for the rather complex heat-
exchange mechanisms between the turbulent flow and the immersed body is given by
the data of Zheltovodov (Settles & Dodson 1991), where the mean wall temperature
varies only by about 10% to 20% across the compression region. Further details on
the mathematical model and the boundary-condition implementation can be found
in Adams (1998).

2.2. Numerical method

In this section we briefly summarize the numerical approach. For details, we refer
to the given references. For the spatial discretization of the convective terms in
equation (2.1) a hybrid compact-ENO finite-difference scheme is used (Adams &
Shariff 1996). In smooth regions, this scheme is similar to the Padé schemes of
Lele (1992a), it is, however, upwind biased owing to asymmetric coefficients of the
centred stencil. The scheme is consistently of 5th order in smooth regions (including
boundaries), has a 5-point stencil and good dispersion preserving properties. Aliasing
errors are diminished by a controlled amount of artificial dissipation of 6th order
at non-resolved wavenumbers. Around discontinuities the scheme is coupled with an
essentially non-oscillatory (ENO) scheme of 4th order (Shu & Osher 1989), which has
good shock-capturing properties. The diffusion terms are discretized with a 6th-order
compact finite-difference scheme of Lele (1992a). The spatially discretized equations
are advanced in time with an explicit low-storage 3rd-order Runge–Kutta scheme
(Williamson 1980). A comprehensive description of the numerical algorithm, also
addressing issues of the efficient implementation of the coupling algorithm, and
validation results can be found in Adams & Shariff (1996) and Adams (1998).

As mentioned in the previous section, Dirichlet-type boundary conditions are
imposed at the upper truncation plane. For discretization schemes without numerical
diffusion, non-reflecting boundary conditions are often implemented instead, in order
to diminish wave reflections at the boundary. In our case, the mesh coarsening towards
the boundary lets the numerical diffusion of the discretization scheme act as a filter
which removes spurious wave-reflections from the boundary.

3. Simulation results
The simulation parameters are summarized in table 1. Ninety-seven of the total

N3 + 1 = 181 grid points reside within the mean boundary layer at the inflow, which
gives an average spacing over the height of the boundary layer at the inflow of
∆+
x3
' 2.3. The first gridpoint off the wall is at ∆+

x3
= 1.4. The fact that the numerical

scheme is consistently of high order up to the boundaries relaxes the near-wall
resolution requirements compared with lower-order schemes. Sufficient wall normal
resolution is assessed from the fact that the law of the wall is correctly represented,
figure 7(a), for which it is necessary that near-wall gradients are accurately computed.
For the statistical data presented in the following, 600 samples were taken over a time
interval of about ts = 915, which corresponds to about 10 flow-through times. In the
following, we present profile data along certain computational grid lines ξ1 = const.
For the location of these lines, we refer to figure 2 which shows a side view of the
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Parameter Value Comment

M∞ 3
Reδ1

8977
Reθ 1685 using ν∞
Reδ2

732 using νw
δ0 2.38 at inflow
θ 0.19 at inflow
T ∗∞ 115 K
TW 2.522T ∗∞
S∗ 110.4 K
β 18◦
Lx1

63.80
Lx2

2.90
Lx3

10.87 at inflow
N1 1000
N2 80
N3 180
∆+
x1

6 at inflow
∆+
x2

3.3 at inflow

∆+
x3

(1)
1.4 at inflow

Table 1. Simulation parameters.

computational domain. The relevant positions are marked with numbers which we
refer to in the following.

3.1. Inflow data

Inflow data for the compression ramp simulation were generated by a separate
DNS of a spatially evolving zero-pressure-gradient turbulent flat plate boundary
layer. This simulation itself required inflow data which were taken from a temporal
DNS. In this temporal DNS, a turbulent flow was obtained by employing a bypass
transition mechanism where linearly stable oblique modes are initialized with a finite
amplitude leading to transient growth from a background-noise seed and eventually
to laminar–turbulent transition, see e.g. Haniff, Schmid & Henningson (1996). This
procedure is more efficient than starting the temporal DNS from non-physical initial
conditions. To reduce computational cost, the spatial boundary layer DNS was run
only for tsi = 70δ0/U∞. About 18 mean boundary-layer thicknesses downstream of the
inflow the instantaneous flow of the spatial boundary layer DNS was sampled and all
dependent variables in a cross-flow plane (x2, x3) were stored. A thousand such samples
were taken. Since the inflow data were used for larger integration times than tsi, the
data were made periodic in time artificially by linearly blending the time-interval ends.
The inflow data for an arbitrary time t are then obtained by interpolating the data at
time mod(t, tsi) with a third-order polynomial interpolation. By this construction, we
avoid an artificial forcing of a frequency in the range of the characteristic frequency
of the boundary layer or smaller, since in a preliminary computation it was found that
this affects the shock and separation dynamics (Adams 1997). The time span tsi is large
enough to ensure that the inflow data are sufficiently decorrelated before they repeat.
The computational cost for generating the inflow data from a precursor boundary-
layer simulation was roughly 10% of that for the compression ramp simulation. A
larger time sequence tsi would certainly have improved statistical averages, but we
found the increase of computational cost impractical. The maximum amplitude at
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Figure 3. E(k2; x1, x3) at downstream positions 1–10 (bottom-up), and (a) x+
3 = 5, (b) x+

3 = 97
with respect to inflow; spectra are shifted by a factor of 10 for clarity.

inflow of the streamwise velocity fluctuation u′′1 is about 7%, and of the temperature
fluctuation T ′′ about 15%.

3.2. Assessment of resolution

The enormous computational effort makes grid-independence studies impractical for
DNS. After thorough design and validation of the numerical method the flow pa-
rameters for the actual simulation were chosen in order to make best possible use of
the available computational resources. By trial parameter variations the parameter
set given in table 1 was found suitable. An assessment of the spatial resolution is
facilitated by periodicity in the x2-direction. A sufficiently accurate spatial discretiza-
tion is indicated by the fact that suitable norms of the solution decay sufficiently fast
in Fourier-transform space. A Fourier expansion of the solution is possible in the
periodic x2-direction. Under-resolution in the directions x1 and x3 would reflect in the
k2 spectra owing to aliasing across the wavenumber-vector components. We choose
as norm the spectral kinetic energy which we compute from the velocity components

ui(x1, x2, x3) =

N2/2−1∑
k2=−N2/2

ûi(x1, x3) ei2πk2x2/L2 (3.1)

as

E(k2; x1, x3) = ûi(k2; x1, x3) û
∗
i (k2; x1, x3), (3.2)

where the asterisk indicates the complex conjugate (we use the summation convention
for equal indices).

Figure 3 shows the energy spectra at the 10 downstream stations defined by
the intersection of lines ξ1 = const and ξ3 = const, as indicated in figure 2. The
longitudinal coordinate lines ξ3 = const go through the points (x1 = 0, x+

3 = 5) and
(x1 = 0, x+

3 = 97), respectively. In all cases, we find that the spectra decay by 5 to 6
orders of magnitude, without a significant pile-up close to the Nyquist wave number,
which indicates that all relevant scales are well resolved.
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Figure 4. Two-point correlations for downstream stations 1–10 (bottom-up), (a) Rρ,ρ at x+
3 = 5,
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3 = 97; curves shifted by 0.25 for clarity.

Another issue is the sufficiency of the domain size in the spanwise direction, where
a periodic boundary condition is enforced. For a periodic boundary condition to
be reasonably accurate the two-point correlations of the solution are required to be
close to zero at a distance of half the domain size. In figure 4, we show the two-
point correlations for ρ and u1 at the downstream stations 1–10 and the wall normal
positions x+

3 = 5 and x+
3 = 97 corresponding to the positions where the energy spectra

are shown in figure 3. Table 2 gives the values of all primitive-variable two-point
correlations at δx2

= 1.45 = L2/2. The magnitude of Rρρ (density correlations) close
to the wall decays to values between 6% and 7%. The velocity correlations assume
values up to 10% to 15%, which can be an indication of a tendency to build a
coherent crossflow structure. This is also indicated by the spectral kinetic energy
which is maximum for the modes k2 = ±1, figure 3. The pressure correlation Rpp
assumes significant values at δx = L2/2 near the ramp corner. It should be noted that
crossflow structures with a spanwise wavelength larger than the spanwise domain
size cannot be represented in the simulation, see also § 3.4. The limited computer
memory made it, however, impossible at this stage to further increase the spanwise
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domain size. The turbulence structure of the flow is probably less affected by the
small spanwise-domain size which is larger than the minimal flow unit established by
Jimenez & Moin (1991).

3.3. Mean flow

The mean flow profiles are plotted along computational mesh lines ξ1 = const
for the downstream stations 1 to 10, figure 5. The velocity vectors are shown in
their contravariant representation. Velocity and temperature are Favre averaged, and
for comparison the corresponding Reynolds averages are shown also. The Favre
or mass averages are computed from f̃ = ρf/ρ̄, where the overbar denotes the
Reynolds or ensemble average. Where applicable, we make use of the spanwise
homogeneity, and averages were obtained by computing the arithmetic mean over
all time samples and over all grid points in x2. Favre averaging not only simplifies
the averaged compressible Navier–Stokes equations but is also the natural way of
extracting average primitive variables from averaged conservative variables which
are the primary variables for a compressible flow. Naturally, from the equation of
state then the Favre-averaged temperature T̃ appears as the consistent supplement
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Rρρ Ru1u1
Ru2u2

Ru3u3
Rpp

Station x+
3 = 5 x+

3 = 97 x+
3 = 5 x+

3 = 97 x+
3 = 5 x+

3 = 97 x+
3 = 5 x+

3 = 97 x+
3 = 5 x+

3 = 97

1 0.06 0.02 0.02 −0.01 −0.006 −0.05 −0.01 −0.02 0.11 0.12
2 0.10 −0.04 0.02 −0.09 −0.04 −0.03 −0.01 0.02 0.16 0.14
3 0.17 −0.03 −0.01 −0.12 −0.09 −0.04 −0.001 0.01 0.23 0.19
4 0.16 0.01 −0.05 −0.09 −0.08 −0.06 −0.01 0.009 0.11 0.32
5 0.09 0.05 −0.05 −0.09 −0.08 −0.03 −0.02 0.04 0.08 0.41
6 0.11 0.05 0.08 −0.05 −0.08 −0.06 −0.005 0.03 0.09 0.23
7 0.15 0.02 0.005 −0.02 −0.05 −0.15 0.02 −0.02 0.16 0.18
8 0.09 0.01 0.003 −0.03 −0.08 −0.10 0.02 −0.02 0.12 0.15
9 0.10 0.01 −0.01 −0.05 −0.08 −0.09 0.03 −0.02 0.12 0.15

10 0.11 0.03 −0.05 −0.15 −0.07 −0.08 0.01 0.05 0.13 0.19

Table 2. Values of the two-point correlation functions of the primitive variables at δx2
= L2/2,

at stations 1–10 and following mesh-planes starting at (x1 = 0, x+
3 = 5) and (x1 = 0, x+

3 = 97),
respectively.

Profile x3sonic x3
+
sonic

1 0.15 10
2 0.18 11
3 0.25 8
4 0.35 —
5 0.48 —
6 0.88 —
7 1.28 —
8 1.29 37
9 1.28 50

10 0.25 14

Table 3. Mean sonic layer position.

to the Favre-averaged set of primitive variables ρ̄, ũi, p̄. In the following, we refer to
the contravariant velocities uc1 = (u1∂ξ1/∂x1 + u3∂ξ1/∂x3)/

√
(∂ξ1/∂x1)2 + (∂ξ1/∂x3)2,

uc2 = u2, and uc3 = (u1∂ξ3/∂x1 + u3∂ξ3/∂x3)/
√

(∂ξ3/∂x1)2 + (∂ξ3/∂x3)2. The difference
between contravariant components and longitudinal components, where the velocity
vector is rotated into a Cartesian system aligned with the wall, is small. A contravariant
projection allows, however, for a consistent definition across the integration domain,
whereas the longitudinal projection is ambiguous near the corner.

From the velocity profiles we see the typical deformation due to an adverse pressure
gradient, figure 5(a), and at the last station, 10, the profile shows a wake-like shape.
Differences between ū1 and ũ1 are very small throughout the domain (the same holds
for the other velocity components). The differences between Reynolds and Favre
averages for the temperature are small but visible, within and after the interaction
region, figure 5(b). When T̃ and T̄ differ but ũ and ū are almost identical, it
can be concluded that density fluctuations assume a significant magnitude but are
uncorrelated with the velocity fluctuations. This can be observed from the identity
f̃ − f̄ = ρ′f′/ρ̄ for some variable f. In other words, density does not behave as a
passive flow property.

Owing to the low Reynolds number, the mean boundary layer does not exhibit
any significant thinning downstream of the interaction. The mean boundary-layer
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Figure 6. Downstream evolution of mean velocity profiles ũc1: (a) for the simulation, (b) for ExpB
(· · · · · ·) and ExpC (—–) of Smits & Muck (1987), data from Settles & Dodson (1991); thin dotted
vertical lines are reference lines indicating the downstream position x1 from the ramp corner (lower
horizontal axis); the magnitude of ũc1 (upper horizontal axis) is measured from the respective
reference lines; for the experiments ũc1 is given along wall-normal coordinate lines.

thickness at station 10 is about 95% of the boundary-layer thickness at station 1.
This differs from what is observed for high-Reynolds-number experiments (Smits &
Muck 1987) but agrees with the lower Reynolds-number experiments of Zheltovodov
et al. (Settles & Dodson 1991). In figure 6(a), the downstream evolution of the ũc1
profiles is shown at stations 2 to 10. For reference, experimental profiles for the cases
with β = 16◦ and with β = 20◦ of Smits & Muck (1987), hereinafter referred to as
ExpB and ExpC, are shown in figure 6(b).

The adverse pressure gradient is felt first near the wall, where upstream propagation
is facilitated owing to the elliptic character of the flow beneath the sonic line, figure
5(c). For reference, the position of the mean sonic layer is given in table 3, including
the wall-distance in wall-units where applicable. Since the wall temperature is kept
constant at the pre-shock value across the domain, the density near the wall increases
according to the pressure rise behind the shock, figure 5(c). Across the shock, the
density increases according to the jump relations (the compression ratio is 3.4). The
higher-density fluid is transported towards the wall by turbulent diffusion until it
reaches the boundary-layer edge, where it mixes with lower density near-wall fluid.
This process results in a wedge-like high-density region between the shock and the
wall. Pressure adjusts faster across the boundary layer than density and temperature.
The post-shock pressure shows only small variation across the boundary layer. The
mean shock location is clearly visible in the profiles at station 10 (note that the shock
is smeared owing to averaging). We also note that the mean-temperature profiles are
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close to adiabatic ones at stations 1 to 9. At station 10, where hot fluid reaches the
wall, a significant mean-temperature gradient appears at the wall, which would not
be the case for adiabatic-wall boundary conditions. The effect of a wall heat flux,
however, can be expected to be confined to a small internal layer close to the wall
(Debiéve et al. 1997; Maeder, Adams & Kleiser 2000).

Scaled in local wall units, contravariant velocity profiles at relevant stations (with
positive Cf) are shown in figure 7. At position 1, we find that the van Driest
transformed mean velocity (e.g. Smits & Dussauge 1996) ū1VD agrees with the law
of the wall ū+

1VD
= 2.5 ln(z+) + 5.5, although the logarithmic region collapses to an

inflection point owing to the low Reynolds number. The non-transformed velocity ū+

at station 1 undershoots the law of the wall. The downstream profile-evolution follows
a similar trend as was found by Smits & Muck (1987) for their experimental data. The
entire profile overshoots the wall-law close to separation, station 2, as is typical for
an adverse-pressure-gradient boundary layer (Na & Moin 1998). This trend continues
through the last profile at station 3 before mean-flow separation. Within the region of
mean-flow separation wall-scaling has no meaning and profiles are not shown. After
mean-flow reattachment at station 9 the boundary layer has recovered in a similar
fashion to the downstream profiles of Smits & Muck (1987). What is often called a
‘dip’ below the wall-law can be seen. Also visible is a region of almost constant slope.
The profiles after reattachment are similar to those observed by Na & Moin (1998)
for a flat-plate boundary layer with separation. All profiles show an indication of a
logarithmic region. By matching the profiles with a wall-law, von Kármán constants
of κ = 0.30 and κ = 1.8 are obtained, where the integration constant of the wall-law
changes to 2.5 and 2 for stations 2 and 9, respectively. Note that for post-processing,
the mesh has been coarsened by a factor of 2 in each direction. Accordingly, the first
mesh point as shown is in fact the second mesh point in the computation.

The skin friction coefficient Cf = 2 σ̄⊥13, where σ⊥13 denotes the shear component
for the viscous stress in a coordinate system following the wall, exhibits a sudden
drop at mean-flow separation followed by a steep increase at reattachment, figure
8(a). The extent of the mean-flow separated area can be estimated from the part
where Cf is negative (Cf = 0 is indicated by a thin line). For reference, we show
the experimental data for the cases ExpB and ExpC. Reθ for ExpB and ExpC is
about 50 times larger than for the computation; hence, the overall much lower skin
friction compared with the computation. Since the experimental data do not provide
negative values of skin friction, the size of the mean-flow separation for case ExpC
is estimated to be about three displacement thicknesses of the incoming boundary
layer. Note that in the computation, the corner is approximated smoothly by a small
radius which is resolved numerically (see Adams 1998). Reattachment takes place
shortly behind the corner. Also shown is the surface pressure psurf and its derivative
p′surf = dpsurf/dx, figure 8(b). The derivative p′surf shows a sequence of three inflection
points of psurf (maximum-minimum-maximum of p′surf) in the mean-flow separated
area (first and last are indicated by arrows). The existence of a sequence of three
inflection points is one criterion of mean-flow separation, as given by Green (1970).
For reference, also the experimental surface-pressure distributions of ExpB and ExpC
are given. A pressure plateau as predicted by the free-interaction equations (Adamson
& Messiter 1980), which is clearly present in the high-Reynolds-number experimental
data ExpC, is not visible at the low Reynolds number of the computation. The
surface-pressure distributions reach the levels predicted by inviscid theory which are
indicated by dotted lines in figure 8(b). The upstream influence length Lup can be
estimated from a tangent criterion (Katzer 1989). For the computation, Lup = 2.3 δ0
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upstream of the corner is obtained, which compares well with the experimental
data.

3.4. Shock-wave structure and separation

For an overview of the instantaneous flow behaviour, we first consider a computed
Schlieren visualization of the instantaneous density-gradient magnitude averaged
over the spanwise coordinate x2 in figure 9(a). This corresponds roughly to a spark
shadowgraph of the flow, compare, for example, with figure 3a of Dolling & Murphy
(1983). Evidently, turbulence lengthscales decrease across the interaction region. This
agrees with an observed decrease of the Taylor microscale λ, equation (3.5), from
λ = 0.22 at station 1 to λ = 0.16 at station 10 for a fixed distance above the wall
of x3 = 1.96. Note that the values for λ in table 4 are along a meshline which
detaches from the wall downstream, i.e. the distance from the wall at station 10 is
larger than that at station 1. The shock foot is the origin of a high density-gradient
interface at the boundary-layer edge, which extends downstream. Owing to the low
Reynolds number, the mean-streamline curvature is small and the confluence point of
compression waves, which radiate from the sonic layer outwards to build the shock,
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is located closer towards the boundary-layer edge than is observed in high-Reynolds-
number experiments, see Smits & Muck (1987) or Ardonceau et al. (1979). For
comparison, we also show the corresponding computed Schlieren visualization for
the stationary flow, averaged over 100 samples, in figure 9(b). The area of unsteady
shock-motion is apparent from a comparison of the instantaneous shock location in
figure 9(a) with its mean location in figure 9(b). For a comparison with the visualized
simulation data, an experimental Schlieren visualization of a M∞ = 2.9 boundary
layer along a β = 25◦ compression ramp at Reθ = 9600 (kindly provided by A.
Zheltovodov, ITAM, Novosibirsk) is shown in figure 10, where the compression waves
emanating from the boundary-layer edge are clearly visible.

A three-dimensional visualization illustrates the instantaneous shape of the shock
front, figure 11. The shock is visualized by a surface of constant negative velocity
divergence ∂xiui = −0.4. The shock forms in the outer part of the boundary layer and
fringes towards the wall. This fringing has also been called ‘spanwise shock wrinkling’
as it appears in experimental visualizations (Smits & Muck 1987). It is caused by the
unsteadiness of the sonic layer and the outward radiating compression waves. The
colour coding in figure 11 corresponds to local density, which is shown at the wall,
the rear boundary of the computational domain, and in four crossflow planes. The
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Figure 10. Flow-field experimental Schlieren visualization of a 25◦ compression ramp at
M∞ = 2.9, Reθ = 9600, provided by A. Zheltovodov, ITAM, Novosibirsk.
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previously mentioned wedge-like high-density zone behind the shock is clearly visible.
A region with a length of about 1.5 δ0 at the downstream edge of the computational
domain is affected by the sponge outflow-boundary treatment where the boundary
layer is ‘cooled’ down to a laminar flow, see Adams (1998).

To illustrate the shock motion, a sequence of spanwise-averaged pressure-gradient
contours in (x1, x3)-planes is shown in figure 12. The time sequence spans a time
interval of ∆t = 16.33 with (almost) equal increments. The shock exhibits meandering
oscillations with maximum excursions of about 0.1δ0 about its mean location. No
translatory or flapping motion of the shock can be observed. The shock foot pene-
trates, however, alternating between deeper and less deep into the boundary layer.

The dynamics of the compression shock and the separated flow around the ramp
corner have been major issues in experimental research. Large-scale shock motions
(LSSM) with shock excursions of the order of δ0 were detected and investigated by
Dolling & Murphy (1983). Typical shock-oscillation frequencies were found to be of
the order of 0.04fc to 0.07fc (increasing with increasing boundary-layer thickness),
where fc = U∞/δ0 is the characteristic frequency of the boundary layer. This result
was disputed later by Andreopoulos & Muck (1987) who report a shock-oscillation
frequency of about 0.13fc which they relate to the bursting frequency of the oncoming
boundary layer.

To identify shock location and shock motion, Andreopoulos & Muck (1987) and
Dolling & Murphy (1983) use traces of the wall pressure in the shock-foot region.
We apply a similar analysis here to our numerical simulation data. In figure 13, we
show time traces of the instantaneous wall pressure at x1-positions (a) well before
separation, (b) at the onset of separation, (c) within the separated region, and (d)
just after reattachment, together with their normalized probability density functions
(PDF). At separation, roughly in the shock-foot region, the PDF of the pressure
signal flattens and develops an off-centre peak. In the separated flow, the PDF is
Gaussian and just after reattachment it is slightly left-skewed. Wall-pressure signals
have been measured by Dolling & Or (1985) at significantly higher Reynolds number,
which allows the shock to penetrate more deeply into the boundary layer before it
diffuses, as mentioned before. As a consequence, Dolling & Or (1985) report much
stronger PDF-excursions from Gaussian than we observe here, although qualitative
trends are similar.

Unlike the experimental data, the time traces of surface pressure do not show clearly
a shock passage through the wall-pressure tracing points for our low-Re simulation.
Having access to the full flow field we instead try to capture the shock motion directly.
We place a sensor at a fixed location x1 = 44.88 and x3 = 7.76 (⊕ in figure 12) and
record the local Mach number M (t) of the spanwise averaged field in time, figure
14(a). The upper curve is the local Mach number trace M(t), and the lower curve is
the indicator function which is +1 whenever M(t) is larger than the mean value 〈M〉,
and −1 otherwise. Similarly to Andreopoulos & Muck (1987), we can identify one
shock-crossing cycle from two subsequent sign changes of the indicator function and
obtain a sequence of periods from which we extract an average period tsh = 18 with a
standard deviation of stdev(tsh) = 9. As a result, we obtain an average shock-crossing
frequency at the sensor location of fsh = 0.14fc, which is about a factor of 2 larger
than those found by Dolling & Murphy (1983) but compares well with that reported
by Andreopoulos & Muck (1987). If the threshold for detecting a shock crossing is
increased to 〈M〉 ± 0.2 stdev(M), where stdev(M) is the standard deviation of M(t),
the frequency reduces only slightly to fsh = 0.12fc. For thresholds 〈M〉±0.5 stdev(M)
or 〈M〉 ± stdev(M) it drops to fsh = 0.08fc and fsh = 0.05fc, respectively.
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To find out whether the shock motion is driven by bursting events (i.e. the sequence
of an ejection of near-wall fluid into the outer flow followed by a sweep of outer
fluid), we perform a similar analysis in the oncoming boundary layer. Figure 14(b)
shows a recorded M(t) trace at a point (x1 = 8.62, x3 = 1.27), well upstream of
the interaction zone within the oncoming boundary layer. M(t) can be related to
turbulent bursting events, since an ejection of low-speed high-temperature near-wall
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fluid appears as a low-Mach-number spot within the ambient low temperature and
high-speed outer fluid. We set an indicator to ±1 whenever the Mach number exceeds
or falls below the average by an amount of one standard deviation of the recorded
data; otherwise it is 0. The bursting frequency is the inverse of the average delay
time between two subsequent bursting events. Given the above mentioned relation
between local Mach number and bursting events, it can be estimated from the time
between two subsequent sign changes of the indicator function. This procedure gives
a frequency of fb = 0.13fc, which happens to be very close to fsh. However, the
large standard deviations of the signals in both cases should be considered, for fb
it is stdev(fb) = 0.08fc. Yet, since both procedures give at least similar magnitudes,
we conclude that the proposition of Andreopoulos & Muck (1987) which states that
turbulent bursting events drive the shock motion is quite plausible in our case. For
the low Reynolds number of our data, the value fb compares well with the bursting
frequency reported for incompressible boundary layers by Blackwelder & Haritonidis
(1983). The shock dynamics depends on the unsteady deformation of the sonic layer.
Also, it depends on the unsteadiness of the supersonic flow above the sonic layer
which the compression waves radiating from the sonic layer have to pass. Accordingly,
the coupling between shock motion and the events which trigger compression waves
or change their medium is quite complex and does not necessarily exhibit a clear
phase-locking. The mere fact, however, that shock oscillation and bursting happen at
similar frequency indicates a close connection between them.

Unsteady large-scale streamwise vortices have been suggested as one possible
origin for low-frequency LSSM (Smits & Dussauge 1996). The Görtler number for a
turbulent flow can be estimated as

GT =
θ

0.018δ1

√
θ

R
,

(Smits & Dussauge 1996, p. 277), where R is the curvature radius of the average
streamlines within the boundary layer close to the corner, θ is the momentum
thickness and δ1 the displacement thickness. From the simulation data, a maximum
of GT = 6 can be estimated roughly, which is slightly less than the critical Görtler
number for a laminar flow. For that reason, we expect Görtler instability to be weak.
In our case, we did not find indications for the presence of large-scale streamwise
vortices. It should be noted, however, that the spanwise extent of the computational
domain, L2 ' 1.2δ0, does not allow for the resolution of Görtler vortices since their
spacing is typically about 2δ0. It also has been found by Smits & Muck (1987) that
for a case of incipient separation (β = 16◦ and M∞ = 3) the large-scale flow exhibits
an overall two-dimensionality. For higher deflection angles and thus larger separation,
Smits & Muck (1987) concluded the presence of longitudinal roll cells from surface
streak patterns.

To investigate the separation dynamics further, we study the time behaviour of
the spanwise-averaged skin-friction coefficient. A negative skin-friction coefficient is
necessarily associated with a local region of backflow. This we take here synonymously
with a separated flow, avoiding the issue of how to define unsteady separation properly.
Figure 15 shows a time trace of the x1-location where the spanwise-averaged skin
friction becomes negative first (lower curve) and a time trace of the location where the
skin friction becomes positive again last (upper curve). Unlike what was found in our
preliminary simulations (Adams 1997), owing to the different inflow conditions, there
is no dominant frequency on the order of fc in the Fourier transform of the signals
(see inset of figure 15). The very low-frequency mode with f ' 0.006 is a remnant
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of the inflow treatment, where data repeat with about that frequency. Otherwise, the
spectrum is broadband and there is no visible correlation between separation-line and
reattachment-line oscillation, from which we conclude that upstream communication
is insignificant in our case. It should be noted, however, that Smits & Dussauge
(1996) suggest an upstream communication across the area of separated flow to
explain a coupling between separation and reattachment line dynamics which has
been observed by Dolling & Murphy (1983).

3.5. Turbulence structure

Some of the most significant turbulent correlations are Reynolds stresses, auto-
correlations and individual terms of the transport equation for turbulent kinetic
energy. From experiments and theory, it is known that turbulent fluctuations are
amplified and auto-correlations and Reynolds shear stresses increase across the in-
teraction (the latter holds strictly only for sufficiently oblique shocks). Owing to the
parameter differences between our DNS and available experiments, differences in
the mean flow result, which has been pointed out before, and we cannot expect a
quantitative agreement with the experimental data. Trends and amplifications rates
are, however, in reasonable agreement with the experiments. The root mean square
(RMS) of mass-flux fluctuations (ρuc1)

′ = ρuc1 − ρu1
c increases from a maximum of

0.09 in the oncoming boundary layer at station 1 to a maximum of 0.43 at station 10,
figure 16(a). The amplification factor of 4.8 compares reasonably well with the range
found by Smits & Muck (1987). The main contribution to the mass-flux amplification
comes from the density fluctuations, compare figures 16(b) and 16(c). Whereas veloc-
ity fluctuations are maximum in the area of separated flow and then decay, density
fluctuations continue to rise behind the shock. The magnitude of the temperature

fluctuations T ′′ = T − T̃ is less affected by the interaction, figure 16(d), and RMS(T ′′)
rises from a maximum of about 0.2 to about 0.3.

The Reynolds normal stress τ11 = ρu′′1u′′1, the Reynolds shear stress τ13 = ρu′′1u′′3,

and the Reynolds heat flux τh3 = ρu′′3T ′′, as shown in figure 17, are rotated into a
coordinate system which is aligned with the wall (superscript ⊥). This transformation
agrees with the way experimental data are shown usually, since measurement probes



Direct simulation of turbulent compression ramp flow 71

0.4

0.2

0 2 4 6 8 10

0.4

0.2

0 2 4 6 8 10

0.4

0.2

0 2 4 6 8 10

0.4

0.2

0 2 4 6 8 10
x3

x3

x3

x3

(a) (b)

(d )
(c)

R
M

S
((

qu
c 1)

«)
R

M
S

(u
c 1«
«)

R
M

S
(T

««)
R

M
S

(q
«)

Figure 16. (a) RMS((ρuc1)′), (b) RMS(ρ′), (c) RMS(uc1
′′) and (d) RMS(T ′′) at downstream stations

1–10 according to figure 2.

are aligned with the wall. The maximum Reynolds normal stress is amplified by a
factor of about 4 the maximum of the Reynolds shear stresses by a factor of about
13, figures 17(a) and 17(b). The experimental data of Smits & Muck (1987) show
amplification factors of about 5 to 7 and 6 to 12, respectively, the lower values for
β = 16◦ and the higher for β = 20◦. If we follow the DNS data along a mesh line,
which roughly corresponds to following a mean streamline, instead of picking the
maximum of the respective profiles before and behind the shock we obtain a maximum
amplification of about 13 for the normal stress and of about 14 for the shear stress.
A comparable amplification has been observed by Smits & Muck (1987) when the
measurements followed a mean-flow streamline. The maximum of the Reynolds heat
flux is amplified by about a factor of 4 (figure 17c), whereas following a coordinate
line we find a maximum amplification factor of about 8.

A direct comparison of the computed profiles for τ⊥11 and τ⊥13 with the experimental
data ExpB and ExpC confirms that amplification rates and qualitative evolution are
similar, with obvious differences due to the less pronounced upstream effect of the
pressure gradient at the higher experimental Reynolds numbers, figure 18. It should
also be noted that τ⊥13 is quite sensitive to the coordinate transformation. Close to the
corner, τ⊥13 and τc13 can differ by 50%. For the experimental data, a similar sensitivity
to the probe alignment can be expected.
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figure 2.

The downstream evolution of the specific Reynolds normal stress u′′1u′′1 and the

specific Reynolds shear stress u′′1u′′3 are compared with the experimental data ExpB
and ExpC in figure 19. Whereas the experimental data show a sudden increase of
the maxima of the u′′1u′′1 and u′′1u′′3 profiles (hollow symbols) behind the corner, the
simulation indicates a peak before the corner (filled symbols). The lines show the
respective distributions along mesh lines at different distances above the wall. The
maxima move downstream with increasing distance from the wall. If the amplification
of the maxima for the simulation data and for the experimental data are compared, the
agreement (aside from the location) is good. Since the measurements do not resolve
the near-wall region well, the downstream shift of the maximum specific Reynolds
stresses with increasing distance from the wall can lead to an underestimation of
amplification rates in the experimental data.

The trends for the evolution of Reynolds stresses across the interaction agree with
those predicted by rapid distortion theory (RDT) (Mahesh et al. 1993). It has been
noted however, that RDT gives rather too small a stress amplification. Different
amplification of the shear and the normal components leads to a change of the
structure parameter a = −τ⊥13/τii shown in figure 17(d). In the oncoming boundary
layer, a increases from 0.12 to about 0.17 towards the boundary-layer edge, which
agrees well with data reported for incompressible boundary layers (Smits & Dussauge
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1996, p. 215). Through the interaction region, a increases to values of about 0.35 in
the outer part of the boundary layer. Well downstream of reattachment, a decreases
towards its magnitude prior to the interaction (station 10).

A fundamental equation of turbulence modelling is the transport equation for
turbulent kinetic energy which can be written according to Gatski (1997) as:

∂ρ̄K

∂t
+

∂

∂xj
(ũj ρ̄K)︸ ︷︷ ︸
I

= ρ̄P̃︸︷︷︸
II

+ ρ̄Πd︸︷︷︸
III

+ M︸︷︷︸
IV

+
∂D̃t

j

∂xj︸︷︷︸
V

− ρ̄ε︸︷︷︸
VI

+
∂

∂xj

(
µ̄

Re

∂K

∂xj

)
︸ ︷︷ ︸

VII

, (3.3)

where the turbulent kinetic energy (TKE) is defined as

K = 1
2
ρ̄ũ′′i u′′i .

The following definitions and interpretations are assigned to the individual terms of
equation (3.3):

(I) is the convection of K;
(II) is the production of K

ρ̄P̃ = −ρ̄ũ′′i u′′j ∂ũi∂xj
;
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data were taken from Fernholz et al. (1989).

(III) is the pressure dilatation

ρ̄Πd = p′
∂u′k
∂xk

,

which is a purely compressible term since it vanishes for divergence-free flows;
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(IV) is the mass flux variation

M = u′′i
∂τ̄ij

∂xj
− u′′i ∂p̄

∂xi
,

where the last term is often considered separately and denoted as the pressure-work
term ΠW ;

(V) is the turbulent diffusion

∂D̃t
j

∂xj
= − ∂

∂xj

[
1
2
ρ̄ũ′′i u′′i u′′j + p′u′j

]
;

(VI) is the turbulent dissipation

ρ̄ε = τ′ij
∂u′i
∂xj

= εs + εd,

where

εs =
µ̄

Re

(
∂u′i
∂xj
− ∂u′j
∂xi

)2

, εd =
4

3

µ̄

Re

(
∂u′′i
∂xi

)2

, εi = 2
µ̄

Re

(
∂u′iu′j
xixj

− 2
∂

∂xi
u′i
∂u′j
∂xj

)
(Huang, Coleman & Bradshaw 1995). εd is the dilatational dissipation, which is the
other purely compressible term in equation (3.3) since it disappears with the trace of
∂ui/∂xj;

(VII) is the viscous diffusion.

It should be noted that correlations involving viscosity fluctuations have been ne-
glected in the definitions of terms VI and VII. They are certainly unimportant in the
present case, see also Huang et al. (1995).

As a main indicator for compressibility effects, the turbulent Mach number is often
used and is defined as

Mt =

√
2K/ρ̄

ā
(3.4)

(ā is the mean speed of sound).
The maximum of K increases by about a factor of 4 (figure 20a). Mt assumes a

maximum of about 0.5 in the interaction area, rising from about 0.25 (figure 20b).
The rather high value of Mt indicates potentially significant compressibility effects
in the interaction area. This issue is addressed in § 3.6. A comparable value of Mt

has been found in flat-plate boundary layers at M∞ = 4.5 and M∞ = 6 (Maeder et
al. 2000). There, however, the genuinely compressible contributions in equation (3.3)
were found to be small.

In figure 21, we display the most significant terms of equation (3.3) which are
not genuinely compressible. Correlations involving fluctuation gradients and pressure
fluctuations lack smoothness owing to the limited number of samples. To obtain
smoother statistics for these quantities, up to twice as many samples would be
required, which we found impractical considering the computational cost of the
present simulation. We refrain from post-processing filtering as was proposed by Na
& Moin (1996) to improve the legibility of the data. Production ρ̄P̃ increases during
the interaction. Whereas, in the oncoming boundary layer, ρ̄P̃ is maximum near the
wall, the maximum detaches from the wall, and, further downstream, the ρ̄P̃ profile
resembles that of a wake-flow (e.g. Moser, Rogers & Ewing 1998). The wake-like
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Station λ Reλ x3

1 0.22 47 1.96
2 0.23 54 2.33
3 0.23 54 2.42
4 0.23 58 2.46
5 0.24 68 2.49
6 0.24 91 2.55
7 0.25 145 2.59
8 0.24 169 2.58
9 0.24 205 2.58

10 0.26 326 2.54

Table 4. Taylor microscale and microscale Reynolds number along a mesh line starting at x1 = 0
and x+

3 = 91 (referring to inflow) for the downstream stations 1–10, also given are the respective
distances from the wall.

shape of the mean velocity profiles downstream of the interaction is evident from
figure 5(a). Along with increased fluctuation levels the dissipation ρ̄ε also increases.
Near the wall, a steep increase of velocity fluctuations at the wall causes a large
dissipation magnitude. Pressure diffusion and pressure work assume a considerable
magnitude in the vicinity of the shock.

Table 4 shows the variation of the Taylor microscale and the microscale Reynolds
number across the interaction. The distribution follows a mesh line which starts at
x+

3 = 97 at inflow. The Taylor microscale is computed from

λ2 = − 1

R′′u1 ,u1

(3.5)

where R′′u1 ,u1
is the second derivative at δx2

= 0 of the two-point auto-correlation
function Ru1 ,u1

, as shown in figure 4. The small variations of λ are mainly due to the
slightly varying distance from the wall when following a mesh line. The increase in
Reλ is a local Reynolds-number effect due to increasing density.
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3.6. Compressibility effects

Owing to flow compressibility, two additional terms appear in the balance equation for
K (3.3), the pressure dilatation Πd and the dilatational dissipation εd. In homogeneous
turbulence, their magnitude has been shown to be related to the magnitude of the
turbulent Mach number, (see e.g. Blaisdell, Mansour & Reynolds 1993). More recently,
Ristorcelli (1997) showed that under certain formal restrictions and in the case of
small M2

t , pressure dilatation scales with M2
t . Dilatational dissipation scales with M4

t

and is inversely proportional to the turbulent Reynolds number. Ristorcelli (1997)
also noted that Πd is large in non-equilibrium areas of the flow.

For our results, εd is overall smaller than Πd by about one order of magnitude,
figure 22. Within the boundary layer, εd is about two orders of magnitude smaller
than the total dissipation ε throughout the interaction area (note that εd as shown in
figure 22 is multiplied by a factor of 10). ρ̄Πd assumes a significant magnitude near
the wall and around the shock foot, figure 22(d). In the shock foot, ρ̄Πd is larger
than production by a factor of 2, and dissipation is small. The dominant contribution
in the shock-foot area comes from pressure diffusion. It should again be pointed
out that at higher Reynolds number the shock foot penetrates more deeply into
the boundary layer. Then production of K within the boundary layer rises, and an
increased redistribution between internal energy and TKE is to be expected.
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Mahesh et al. (1997) found that the strong Reynolds analogy (SRA), which can
be derived from Morkovin’s hypothesis (Lele 1994), is not satisfied for isotropic
turbulence interacting with a normal shock. For an assessment of the strict form of
the SRA we show profiles of the velocity–temperature correlation

Ru1 ,T = − uc1
′T ′√

uc1
′uc1
′√T ′T ′

(3.6)

in figure 23. At the first station, the Ru1 ,T profile is typical for zero-pressure-gradient
boundary layers (Maeder et al. 2000). In the logarithmic region, Ru1 ,T reaches a
maximum of about 80%. It diminishes to about 60% in the outer part and then
drops rapidly to zero at the boundary-layer edge. The behaviour in the outer part of
the boundary layer persists downstream. In the area of mean-separated flow near the
wall, the correlation as defined in equation (3.6) is negative. During the interaction,
Ru1 ,T is significantly less than 50% in the major part of the boundary layer. It does
not exceed this value downstream of the interaction. Near the shock-foot, Ru1 ,T varies
strongly. It first rises to about 90% and then drops steeply to about 20% just above
the shock-foot. The quantitative implications of this behaviour in the interaction and
in the recovery region on experimental data acquisition remain to be assessed. In any
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case, less than 50% correlation makes the justification of an a priori assumption of
SRA questionable.

Vorticity generation is one of the most important turbulence production sources.
For incompressible flow, it is the only source; for compressible flows, turbulence can
also be driven by fluctuations of the thermodynamic state. As mentioned above, in our
case, the flow is rather dominated by a solenoidal behaviour, with some exceptions
in regions of high-turbulence non-equilibrium. The question arises, whether in these
regions vorticity is mainly generated by stretching and tilting of vorticity, which is
a solenoidal vorticity generation mechanism, or whether the baroclinic production
contributes significantly. Baroclinic production has been found to play a major role
when entropy fluctuations interact with a normal shock (Mahesh et al. 1997).

Neglecting diffusion (for simplicity) the transport equation for the mass-weighted
vorticity ωi/ρ can be written as

∂ωi/ρ

∂t
+ uj

∂ωi/ρ

∂xj
=
ωj

ρ

∂ui

∂xj︸ ︷︷ ︸
Ii

+
1

ρ3
εijk

∂ρ

∂xj

∂ρ

∂xk︸ ︷︷ ︸
IIi

, (3.7)

where I is the production by stretching and tilting and II is the baroclinic production.

We display the ensemble-averaged spanwise component Ī2 and II2 of these terms
in a region around the corner in figure 24. Note that our nomenclature implies
that ω̄2 is positive owing to the mean shear-rate, and positive contributions Ī2, II2

increase ω2. Stretching production is dominant near the wall in the small mean-
separated area ahead of the corner. Only around and beneath the shock-foot area
does baroclinic production reach an appreciable magnitude. It can be expected that
baroclinic vorticity production would affect turbulence structure more significantly if
the shock penetrates further into the boundary layer, at higher Reynolds numbers, for
instance (Mahesh et al. 1997). Outside the boundary layer, vorticity production across
the shock is insignificant since the ambient fluid has only small fluctuations. It should
be noted that terms Ī and II are formally singular at the shock. To avoid spurious
oscillations, derivatives across the shock have been computed with an essentially
non-oscillatory (ENO) interpolation during the post-processing stage.
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4. Discussion
There are two possible sources for the disagreement between results reported

for RANS computations using turbulence models and experimental results. First,
experiments often (in particular for large separations) show an unsteady large-scale
shock motion (LSSM) which is apparently not related to turbulence events in the
oncoming boundary layer. The origin of this behaviour is unclear, it may be caused
by a low-frequency instability of large-scale cross flow structures, such as unsteady
Görtler vortices. It also may be that these LSSMs are driven by variations in the
oncoming flow or in the ambient flow. If there is a LSSM then the meaning of a
time-averaged RANS solution becomes unclear. This point has been addressed by
Marshall & Dolling (1992) with the recommendation that an inclusion of LSSM is
likely to be essential to improve RANS predictions in relevant cases. If LSSM has an
origin within the interaction area this should be captured by the turbulence model. In
our case, we did not observe any LSSM. The spanwise extent of the computational
domain being insufficient to capture relevant large-scale cross flow vortex structures
is a possible reason, but not a likely reason at our flow parameters, considering
that no evidence for their existence was found in our simulation and the rather low
estimated Görtler number. When considering LSSM, one should be aware that the
shock-separation dynamics is very sensitive to events in the oncoming flow. A forcing
in the inflow data reflects clearly in the unsteady behaviour of the separation location
and the shock. We expect that large-eddy simulations which should be able to reach
to significantly higher Re and domain sizes in the near future will help to clarify this
point.

A second candidate for a disagreement between turbulence-model predictions and
experimental data is the effect of compressibility. The shock-foot region is a source of
turbulence production and of enhanced compressibility effects, which are expressed
by an increased pressure dilatation. It is found that dilatational dissipation is insignif-
icant. Pressure dilatation reaches an appreciable magnitude only in the small region
of separated flow and around the shock-foot, but is small otherwise. Concerning tur-
bulence statistics we can therefore conclude that compressibility has no major effect
on them. Again, it should be noted that this may be quite different at higher Reynolds
numbers since the flow structure changes on the large-scales and the shock-foot pene-
trates more deeply into the boundary layer. An obvious compressibility effect which is
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not directly related to the turbulence structure is the shock-induced density increase.
The shock-foot is the origin of a wedge-like region of high density extending down-
stream. Yet, turbulence adjusts fast enough for it to behave as dominantly solenoidal
in this region.

Smits & Muck (1987) point out that a number of mechanisms acting individually
or simultaneously can be responsible for amplification of turbulence activity across
a shock–boundary-layer interaction. The first to consider is the interaction of shear-
driven turbulence with an oblique rapid distortion due to very large flow gradients
across a shock (in an integral sense, the Rankine–Hugoniot conditions), see Mahesh
et al. (1996) and Lele (1992b). In our case, the pressure gradient which is felt by
the turbulence within the boundary layer is more gradual, since the shock does
not penetrate deeply into the boundary layer. As has been observed in experiments
(Spin et al. 1994), a more gradual streamline curvature of a few δ0 can cause a
similar amplification to a sudden deflection, when flow states sufficiently far upstream
and downstream of the interaction area are compared. The ratio between turbulent
timescale and distortion timescale can be estimated as

u′iu′i
λ

Lup

U∞
= O(10−2)

which is sufficiently small to assume that rapid distortion can be a viable mechanism
even in our case (Jayaram et al. 1989). Secondly, there can be a ‘pumping’ effect due
to ‘shock-flapping’ or LSSM (see § 10.2.4 of Smits & Dussauge 1996). Aside from the
uncertain comparison between experiment and DNS, we achieve similar amplification
rates of turbulent fluctuations to those observed by Smits & Muck (1987) and a
‘pumping’ mechanism is not relevant since there is no LSSM in our DNS.
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